libvaxis/src/Tty.zig

480 lines
18 KiB
Zig
Raw Normal View History

const std = @import("std");
const builtin = @import("builtin");
const os = std.os;
const vaxis = @import("main.zig");
const Vaxis = vaxis.Vaxis;
const Key = vaxis.Key;
const log = std.log.scoped(.tty);
const Tty = @This();
const Writer = std.io.Writer(os.fd_t, os.WriteError, os.write);
const BufferedWriter = std.io.BufferedWriter(4096, Writer);
/// the original state of the terminal, prior to calling makeRaw
termios: os.termios,
/// The file descriptor we are using for I/O
fd: os.fd_t,
/// the write end of a pipe to signal the tty should exit it's run loop
quit_fd: ?os.fd_t = null,
buffered_writer: BufferedWriter,
/// initializes a Tty instance by opening /dev/tty and "making it raw"
pub fn init() !Tty {
// Open our tty
const fd = try os.open("/dev/tty", os.system.O.RDWR, 0);
// Set the termios of the tty
const termios = try makeRaw(fd);
return Tty{
.fd = fd,
.termios = termios,
.buffered_writer = std.io.bufferedWriter(Writer{ .context = fd }),
};
}
/// release resources associated with the Tty return it to it's original state
pub fn deinit(self: *Tty) void {
os.tcsetattr(self.fd, .FLUSH, self.termios) catch |err| {
log.err("couldn't restore terminal: {}", .{err});
};
os.close(self.fd);
}
/// stops the run loop
pub fn stop(self: *Tty) void {
if (self.quit_fd) |fd| {
_ = std.os.write(fd, "q") catch {};
}
}
/// read input from the tty
pub fn run(
self: *Tty,
comptime EventType: type,
vx: *Vaxis(EventType),
) !void {
// create a pipe so we can signal to exit the run loop
const pipe = try os.pipe();
defer os.close(pipe[0]);
defer os.close(pipe[1]);
// get our initial winsize
const winsize = try getWinsize(self.fd);
if (@hasField(EventType, "winsize")) {
vx.postEvent(.{ .winsize = winsize });
}
// assign the write end of the pipe to our quit_fd
self.quit_fd = pipe[1];
// Build a winch handler. We need build this struct to get an anonymous
// function which can post the winsize event
// TODO: more signals, move this outside of this function?
const WinchHandler = struct {
const Self = @This();
var vx_winch: *Vaxis(EventType) = undefined;
var fd: os.fd_t = undefined;
fn init(vx_arg: *Vaxis(EventType), fd_arg: os.fd_t) !void {
vx_winch = vx_arg;
fd = fd_arg;
var act = os.Sigaction{
.handler = .{ .handler = Self.handleWinch },
.mask = switch (builtin.os.tag) {
.macos => 0,
.linux => std.os.empty_sigset,
else => @compileError("os not supported"),
},
.flags = 0,
};
try os.sigaction(os.SIG.WINCH, &act, null);
}
fn handleWinch(_: c_int) callconv(.C) void {
const ws = getWinsize(fd) catch {
return;
};
if (@hasField(EventType, "winsize")) {
vx_winch.postEvent(.{ .winsize = ws });
}
}
};
try WinchHandler.init(vx, self.fd);
// the state of the parser
const State = enum {
ground,
escape,
csi,
osc,
dcs,
sos,
pm,
apc,
ss2,
ss3,
};
var state: State = .ground;
// an intermediate data structure to hold sequence data while we are
// scanning more bytes. This is tailored for input parsing only
const Sequence = struct {
// private indicators are 0x3C-0x3F
private_indicator: ?u8 = null,
// we won't be handling any sequences with more than one intermediate
intermediate: ?u8 = null,
// we should absolutely never have more then 16 params
params: [16]u16 = undefined,
param_idx: usize = 0,
param_buf: [8]u8 = undefined,
param_buf_idx: usize = 0,
sub_state: std.StaticBitSet(16) = std.StaticBitSet(16).initEmpty(),
};
var seq: Sequence = .{};
// Set up fds for polling
var pollfds: [2]std.os.pollfd = .{
.{ .fd = self.fd, .events = std.os.POLL.IN, .revents = undefined },
.{ .fd = pipe[0], .events = std.os.POLL.IN, .revents = undefined },
};
// initialize the read buffer
var buf: [1024]u8 = undefined;
while (true) {
_ = try std.os.poll(&pollfds, -1);
if (pollfds[1].revents & std.os.POLL.IN != 0) {
log.info("quitting read thread", .{});
return;
}
const n = try os.read(self.fd, &buf);
var i: usize = 0;
var start: usize = 0;
while (i < n) : (i += 1) {
const b = buf[i];
switch (state) {
.ground => {
// ground state generates keypresses when parsing input. We
// generally get ascii characters, but anything less than
// 0x20 is a Ctrl+<c> keypress. We map these to lowercase
// ascii characters when we can
const key: ?Key = switch (b) {
0x00 => Key{ .codepoint = '@', .mods = .{ .ctrl = true } },
0x01...0x1A => Key{ .codepoint = b + 0x60, .mods = .{ .ctrl = true } },
0x1B => escape: {
// NOTE: This could be an errant escape at the end
// of a large read. That is _incredibly_ unlikely
// given the size of read inputs and our read buffer
if (i == (n - 1)) {
const event = Key{
.codepoint = Key.escape,
};
break :escape event;
}
state = .escape;
break :escape null;
},
0x20...0x7E => Key{ .codepoint = b },
0x7F => Key{ .codepoint = Key.backspace },
else => Key{ .codepoint = b },
};
if (key) |k| {
if (@hasField(EventType, "key_press")) {
vx.postEvent(.{ .key_press = k });
}
}
},
.escape => {
seq = .{};
start = i;
switch (b) {
0x4F => state = .ss3,
0x50 => state = .dcs,
0x58 => state = .sos,
0x5B => state = .csi,
0x5D => state = .osc,
0x5E => state = .pm,
0x5F => state = .apc,
else => {
// Anything else is an "alt + <b>" keypress
if (@hasField(EventType, "key_press")) {
vx.postEvent(.{
.key_press = .{
.codepoint = b,
.mods = .{ .alt = true },
},
});
}
state = .ground;
},
}
},
.ss3 => {
const key: ?Key = switch (b) {
'A' => .{ .codepoint = Key.up },
'B' => .{ .codepoint = Key.down },
'C' => .{ .codepoint = Key.right },
'D' => .{ .codepoint = Key.left },
'F' => .{ .codepoint = Key.end },
'H' => .{ .codepoint = Key.home },
'P' => .{ .codepoint = Key.f1 },
'Q' => .{ .codepoint = Key.f2 },
'R' => .{ .codepoint = Key.f3 },
'S' => .{ .codepoint = Key.f4 },
else => blk: {
log.warn("unhandled ss3: {x}", .{b});
break :blk null;
},
};
if (key) |k| {
if (@hasField(EventType, "key_press")) {
vx.postEvent(.{ .key_press = k });
}
}
state = .ground;
},
.csi => {
switch (b) {
// c0 controls. we ignore these even though we should
// "execute" them. This isn't seen in practice
0x00...0x1F => {},
// intermediates. we only handle one. technically there
// can be more
0x20...0x2F => seq.intermediate = b,
0x30...0x39 => {
seq.param_buf[seq.param_buf_idx] = b;
seq.param_buf_idx += 1;
},
// private indicators. These come before any params ('?')
0x3C...0x3F => seq.private_indicator = b,
';' => {
if (seq.param_buf_idx == 0) {
// empty param. default it to 1
seq.params[seq.param_idx] = 1;
seq.param_idx += 1;
} else {
const p = try std.fmt.parseUnsigned(u16, seq.param_buf[0..seq.param_buf_idx], 10);
seq.param_buf_idx = 0;
seq.params[seq.param_idx] = p;
seq.param_idx += 1;
}
},
':' => {
if (seq.param_buf_idx == 0) {
// empty param. default it to 1
seq.params[seq.param_idx] = 1;
seq.param_idx += 1;
// Set the *next* param as a subparam
seq.sub_state.set(seq.param_idx);
} else {
const p = try std.fmt.parseUnsigned(u16, seq.param_buf[0..seq.param_buf_idx], 10);
seq.param_buf_idx = 0;
seq.params[seq.param_idx] = p;
seq.param_idx += 1;
// Set the *next* param as a subparam
seq.sub_state.set(seq.param_idx);
}
},
0x40...0xFF => {
// dispatch our sequence
state = .ground;
const codepoint: u21 = switch (b) {
'A' => Key.up,
'B' => Key.down,
'C' => Key.right,
'D' => Key.left,
'E' => Key.kp_begin,
'F' => Key.end,
'H' => Key.home,
'P' => Key.f1,
'Q' => Key.f2,
'R' => Key.f3,
'S' => Key.f4,
'~' => blk: {
// The first param will define this
// codepoint
if (seq.param_idx < 1) {
log.warn("unhandled csi: CSI {s}", .{buf[start + 1 .. i + 1]});
continue;
}
switch (seq.params[0]) {
2 => break :blk Key.insert,
3 => break :blk Key.delete,
5 => break :blk Key.page_up,
6 => break :blk Key.page_down,
7 => break :blk Key.home,
8 => break :blk Key.end,
11 => break :blk Key.f1,
12 => break :blk Key.f2,
13 => break :blk Key.f3,
14 => break :blk Key.f4,
15 => break :blk Key.f5,
17 => break :blk Key.f6,
18 => break :blk Key.f7,
19 => break :blk Key.f8,
20 => break :blk Key.f9,
21 => break :blk Key.f10,
23 => break :blk Key.f11,
24 => break :blk Key.f12,
200 => {
// TODO: bracketed paste
continue;
},
201 => {
// TODO: bracketed paste
continue;
},
57427 => break :blk Key.kp_begin,
else => {
log.warn("unhandled csi: CSI {s}", .{buf[start + 1 .. i + 1]});
continue;
},
}
},
'u' => blk: {
if (seq.private_indicator) |_| {
// response to our kitty query
// TODO: kitty query handling
log.warn("unhandled csi: CSI {s}", .{buf[start + 1 .. i + 1]});
continue;
}
if (seq.param_idx == 0) {
log.warn("unhandled csi: CSI {s}", .{buf[start + 1 .. i + 1]});
continue;
}
// In any csi u encoding, the codepoint
// directly maps to our keypoint definitions
break :blk seq.params[0];
},
'I' => { // focus in
if (@hasField(EventType, "focus_in")) {
vx.postEvent(.focus_in);
}
continue;
},
'O' => { // focus out
if (@hasField(EventType, "focus_out")) {
vx.postEvent(.focus_out);
}
continue;
},
else => {
log.warn("unhandled csi: CSI {s}", .{buf[start + 1 .. i + 1]});
continue;
},
};
const key: Key = .{ .codepoint = codepoint };
if (@hasField(EventType, "key_press")) {
vx.postEvent(.{ .key_press = key });
}
},
}
},
else => {},
}
}
}
}
/// write to the tty. These writes are buffered and require calling flush to
/// flush writes to the tty
pub fn write(self: *Tty, bytes: []const u8) !usize {
return self.buffered_writer.write(bytes);
}
/// flushes the write buffer to the tty
pub fn flush(self: *Tty) !void {
try self.buffered_writer.flush();
}
/// makeRaw enters the raw state for the terminal.
pub fn makeRaw(fd: os.fd_t) !os.termios {
const state = try os.tcgetattr(fd);
var raw = state;
// see termios(3)
raw.iflag &= ~@as(
os.tcflag_t,
os.system.IGNBRK |
os.system.BRKINT |
os.system.PARMRK |
os.system.ISTRIP |
os.system.INLCR |
os.system.IGNCR |
os.system.ICRNL |
os.system.IXON,
);
raw.oflag &= ~@as(os.tcflag_t, os.system.OPOST);
raw.lflag &= ~@as(
os.tcflag_t,
os.system.ECHO |
os.system.ECHONL |
os.system.ICANON |
os.system.ISIG |
os.system.IEXTEN,
);
raw.cflag &= ~@as(
os.tcflag_t,
os.system.CSIZE |
os.system.PARENB,
);
raw.cflag |= @as(
os.tcflag_t,
os.system.CS8,
);
raw.cc[os.system.V.MIN] = 1;
raw.cc[os.system.V.TIME] = 0;
try os.tcsetattr(fd, .FLUSH, raw);
return state;
}
const TIOCGWINSZ = switch (builtin.os.tag) {
.linux => 0x5413,
.macos => ior(0x40000000, 't', 104, @sizeOf(os.system.winsize)),
else => @compileError("Missing termiosbits for this target, sorry."),
};
const IOCPARM_MASK = 0x1fff;
fn ior(inout: u32, group: usize, num: usize, len: usize) usize {
return (inout | ((len & IOCPARM_MASK) << 16) | ((group) << 8) | (num));
}
/// The size of the terminal screen
pub const Winsize = struct {
rows: usize,
cols: usize,
x_pixel: usize,
y_pixel: usize,
};
fn getWinsize(fd: os.fd_t) !Winsize {
var winsize = os.system.winsize{
.ws_row = 0,
.ws_col = 0,
.ws_xpixel = 0,
.ws_ypixel = 0,
};
const err = os.system.ioctl(fd, TIOCGWINSZ, @intFromPtr(&winsize));
if (os.errno(err) == .SUCCESS)
return Winsize{
.rows = winsize.ws_row,
.cols = winsize.ws_col,
.x_pixel = winsize.ws_xpixel,
.y_pixel = winsize.ws_ypixel,
};
return error.IoctlError;
}